Tungsten Basis-Sets:
274 4 INPUT 6. 6 6 5 6 0 0 329.3529656 -0.1457448 -2 113.6102932 -43.8187612 -1 39.9308141 -229.4536668 0 11.0046548 -101.4253295 0 3.3099176 -24.2972893 0 1.0597874 -3.8771269 0 120.7193610 2.7625960 -2 40.4863153 90.9432757 -1 12.2414413 212.5686798 0 3.3536130 54.6162565 0 0.7254557 20.7664520 0 0.5842076 -7.5448433 0 97.7263572 1.8994679 -2 32.0030370 53.3500287 -1 10.3044815 131.0179317 0 2.8403761 30.9930029 0 0.5753263 8.8195349 0 80.9725549 2.9410060 -2 29.8854425 52.8348829 -1 10.7716934 132.5222840 0 2.7612542 50.2360265 0 2.0639584 -14.2411625 0 0.3408971 -0.2994311 0 0 1 1 2. 1. 0.6000 1.00000 1.00000 0 1 1 0. 1. 0.200 1. 1. 0 3 3 4. 1. 1.2230 0.09700 0.9630 0.24100 0.3770 0.53000 0 3 1 0. 1. 0.2600 1.00000 F.Cora',A. Patel, N. M. Harrison, R. Dovesi, C. R. A. Catlow, "An ab-initio Hartree-Fock study of the cubic and tetragonal phases of Bulk Tungsten Trioxide" J. Am. Chem. Soc., 118, 12174 (1996)
274 11 INPUT 14. 0 2 6 6 2 2 11.063795 419.227599 0 8.217641 41.191307 0 9.338188 107.348110 0 8.430448 214.699568 0 9.490020 0.025442 2 9.489947 0.051895 2 1.882997 -0.117184 0 1.906972 0.296689 0 6.205433 58.881279 0 6.122157 98.683556 0 6.274556 0.019537 2 6.226375 0.021956 2 1.963875 -0.088577 0 1.888287 -0.209726 0 2.307953 6.232472 0 2.270609 8.311345 0 3.583491 -6.802944 0 3.562515 -8.443232 0 0 0 3 2 1.0 30.0000000000 0.322464834100 27.0000000000 -0.466922572140 13.0780456840 0.426995637760 0 0 1 2 1.0 4.56489858000 1.000000000000 0 0 1 0 1.0 0.92909758000 1.000000000000 0 0 1 0 1.0 0.25943180000 1.000000000000 0 2 4 6 1.0 17.0000000000 -0.037817768433 12.4319734320 0.109056738450 5.15862176580 -0.293999550200 1.28014548120 0.515607266970 0 2 1 0 1.0 0.69177050000 1.000000000000 0 2 1 0 1.0 0.35872359000 1.000000000000 0 3 4 4 1.0 7.40647373150 0.086993963018 5.90262686030 -0.176675400110 1.29847567500 0.551456970300 0.57153508541 0.953135965350 0 3 1 0 1.0 0.39060699000 1.000000000000 0 3 1 0 1.0 0.22840914000 1.000000000000 0 4 1 0 1.0 0.43199000000 1.000000000000 J. Laun, T. Bredow "BSSE-corrected consistent Gaussian basis sets of triple-zeta valence with polarization quality of the sixth period for solid-state calculations", J. Comput. Chem. (2021) https://doi.org/10.1002/jcc.26521
274 11 STUTSC 0 0 3 2 1.0 30.0000000000 0.322464834100 27.0000000000 -0.466922572140 13.0780456840 0.426995637760 0 0 1 2 1.0 4.56489858000 1.000000000000 0 0 1 0 1.0 0.92909758000 1.000000000000 0 0 1 0 1.0 0.25943180000 1.000000000000 0 2 4 6 1.0 17.0000000000 -0.037817768433 12.4319734320 0.109056738450 5.15862176580 -0.293999550200 1.28014548120 0.515607266970 0 2 1 0 1.0 0.69177050000 1.000000000000 0 2 1 0 1.0 0.35872359000 1.000000000000 0 3 4 4 1.0 7.40647373150 0.086993963018 5.90262686030 -0.176675400110 1.29847567500 0.551456970300 0.57153508541 0.953135965350 0 3 1 0 1.0 0.39060699000 1.000000000000 0 3 1 0 1.0 0.22840914000 1.000000000000 0 4 1 0 1.0 0.43199000000 1.000000000000 J. Laun, T. Bredow J. Comput. Chem. (2022), 43:839-846 "BSSE-corrected consistent Gaussian basis sets of triple-zeta valence with polarization quality of the fifth period for solid-state calculation", DOI: 10.1002/jcc.26839 Desmarais, J. K., Flament, J. P., Erba, A. (2020). Spin-orbit coupling in periodic systems with broken time-reversal symmetry: Formal and computational aspects. Physical Review B, 101(23), 235142. Note: To be used with CRYSTAL23
274 14 STUTSC 0 0 2 2. 1. 15.000000000 -0.53984569304 12.000000000 1.0228484726 0 0 1 2. 1. 5.2610967725 1.0000000000 0 0 1 0. 1. 0.92785370307 1.0000000000 0 0 1 0. 1. 0.40334458241 1.0000000000 0 0 1 0. 1. 0.15 1.0000000000 0 2 4 6. 1. 7.2496570000 0.46749049338 6.0848760000 -0.67718942302 1.2523777812 0.53559619861 0.58569208922 0.49083198365 0 2 1 0. 1. 0.45 1.0000000000 0 2 1 0. 1. 0.15 1.0000000000 0 3 1 4. 1. 4.0131231332 1.0000000000 0 3 1 0. 1. 1.6237452450 1.0000000000 0 3 1 0. 1. 0.69187452392 1.0000000000 0 3 1 0. 1. 0.27865835325 1.0000000000 0 4 1 0. 1. 0.9 1.0 0 4 1 0. 1. 0.3 1. cite Desmarais, J. K., Boccuni, A., Flament, J. P., Kirtman, B., & Erba, A. (2023). Perturbation Theory Treatment of Spin–Orbit Coupling. III: Coupled Perturbed Method for Solids. Journal of Chemical Theory and Computation, 19(6), 1853-1863 Desmarais, J. K., Flament, J. P., Erba, A. (2020). Spin-orbit coupling in periodic systems with broken time-reversal symmetry: Formal and computational aspects. Physical Review B, 101(23), 235142. Note: To be used with CRYSTAL23