Tellurium Basis-Sets:
252 9 INPUT 24. 0 2 4 4 2 0 16.814473 281.045843 0 8.793526 61.620656 0 14.877801 67.449464 0 14.269731 134.904304 0 8.724435 14.689547 0 8.291515 29.415063 0 15.205008 35.432057 0 15.225848 53.135687 0 6.071769 9.069802 0 5.804760 13.122304 0 15.206168 -15.745450 0 15.201702 -20.742448 0 0 0 6 2. 1. 2111.19000 0.612000000E-03 311.691000 0.320700000E-02 13.8226000 0.405512000 8.71748000 -0.932588000 1.98303000 0.919657000 0.970377000 0.404671000 0 0 6 2. 1. 2111.19000 0.251000000E-03 311.691000 0.145700000E-02 13.8226000 0.163702000 8.71748000 -0.398455000 1.98303000 0.578074000 0.970377000 0.327124000 0 0 1 0. 1. 0.279765000 1.00000000 0 0 1 0. 1. 0.106776000 1.00000000 0 2 5 6. 1. 17.0629000 0.893400000E-01 10.8306000 -0.271168000 2.59380000 0.662023000 1.12676000 0.460744000 0.300176000 0.288090000E-01 0 2 5 4. 1. 17.0629000 -0.268610000E-01 10.8306000 0.863040000E-01 2.59380000 -0.273502000 1.12676000 -0.151390000 0.300176000 0.583976000 0 2 1 0. 1. 0.975510000E-01 1.00000000 0 3 5 10. 1. 50.9106000 0.335400000E-02 18.4647000 -0.364200000E-02 4.27617000 0.278080000 1.89770000 0.516348000 0.786480000 0.326571000 0 3 1 0. 1. 0.263800000 1.00000000 For calculations with HF and hybrid functionals, it is strongly suggested to use: TOLINTEG 7 7 7 9 30 Heyd, J.; Peralta, J. E.; Scuseria, G. E.; Martin, R. L. Energy Band Gaps and Lattice Parameters Evaluated with the Heyd-Scuseria-Ernzerhof Screened Hybrid Functional. J. Chem. Phys. 2005, 123, 174101 Recently used: P. Pernot, B. Civalleri, D. Presti, A. Savin Prediction uncertainty of density functional approximations for properties of crystals with cubic symmetry J. Phys. Chem. A 119 (2015) 5288-5304
252 9 INPUT 24. 0 2 4 4 2 0 16.814473 281.045843 0 8.793526 61.620656 0 14.877801 67.449464 0 14.269731 134.904304 0 8.724435 14.689547 0 8.291515 29.415063 0 15.205008 35.432057 0 15.225848 53.135687 0 6.071769 9.069802 0 5.804760 13.122304 0 15.206168 -15.745450 0 15.201702 -20.742448 0 0 0 6 2 1.0 396.479546590 0.002630773120 21.9197733090 -0.132035170660 18.0612713900 0.362031978340 8.14034632410 -0.755911202760 2.07059987980 0.791929284000 0.97715185085 0.405583425400 0 0 2 2 1.0 11.2635638410 -0.015212984183 1.61226960620 0.352021405170 0 0 1 0 1.0 0.52919403000 1.000000000000 0 2 4 6 1.0 17.4795022210 0.115177991820 10.4339431710 -0.412053026720 1.36230247630 0.787605780760 0.59239616258 0.152832990180 0 2 1 4 1.0 2.81690169000 1.000000000000 0 2 1 0 1.0 0.30161299000 1.000000000000 0 3 5 10 1.0 50.8218359910 0.003376347477 18.8840953780 -0.003522140894 4.25273046300 0.282542160650 1.87575570920 0.520393729160 0.77069282849 0.322135416890 0 3 1 0 1.0 0.32024082000 1.000000000000 0 3 1 0 1.0 0.15001209000 1.000000000000 J. Laun, D. V. Oliveira, T. Bredow J. Comput. Chem. 39 (2018) 1285-1290 " Consistent gaussian basis sets of double- and triple-zeta valence with polarization quality of the fifth period for solid-state calculations ", DOI: 10.1002/jcc.25195
252 12 INPUT 24. 0 2 4 4 2 0 16.814473 281.045843 0 8.793526 61.620656 0 14.877801 67.449464 0 14.269731 134.904304 0 8.724435 14.689547 0 8.291515 29.415063 0 15.205008 35.432057 0 15.225848 53.135687 0 6.071769 9.069802 0 5.804760 13.122304 0 15.206168 -15.745450 0 15.201702 -20.742448 0 0 0 5 2 1.0 6213.20016500 0.000173920733 920.896400170 0.001193358984 199.280427080 0.003625655678 24.7742330980 -0.059791033012 14.8381991690 0.959432032630 0 0 2 2 1.0 12.2787619540 0.759424299360 6.38078455320 0.353316895420 0 0 1 0 1.0 1.68979696000 1.000000000000 0 0 1 0 1.0 0.19518007000 1.000000000000 0 2 3 6 1.0 204.294008520 0.000406054068 18.2087593580 0.060255451613 9.92110243020 -0.274916712770 0 2 3 4 1.0 3.14415286850 0.431548499740 1.72208840310 0.554030791100 0.89098945714 0.240873112270 0 2 1 0 1.0 0.50599144000 1.000000000000 0 2 1 0 1.0 0.15135485000 1.000000000000 0 3 6 10 1.0 121.510552490 0.000634906290 32.9687943960 0.006181193632 19.2498624510 -0.008892982522 4.71984072540 0.201598847640 2.34280614160 0.429760490130 1.11353794120 0.382471267510 0 3 1 0 1.0 1.15243468000 1.000000000000 0 3 1 0 1.0 0.47220583000 1.000000000000 0 3 1 0 1.0 0.15628260000 1.000000000000 J. Laun, D. V. Oliveira, T. Bredow J. Comput. Chem. 39 (2018) 1285-1290 " Consistent gaussian basis sets of double- and triple-zeta valence with polarization quality of the fifth period for solid-state calculations ", DOI: 10.1002/jcc.25195
252 12 INPUT 24. 0 2 4 4 2 0 16.814473 281.045843 0 8.793526 61.620656 0 14.877801 67.449464 0 14.269731 134.904304 0 8.724435 14.689547 0 8.291515 29.415063 0 15.205008 35.432057 0 15.225848 53.135687 0 6.071769 9.069802 0 5.804760 13.122304 0 15.206168 -15.745450 0 15.201702 -20.742448 0 0 0 5 2 1.0 6213.20016500 0.000173920733 920.896400170 0.001193358984 199.280427080 0.003625655678 24.7742330980 -0.059791033012 14.8381991690 0.959432032630 0 0 2 2 1.0 12.2787619540 0.759424299360 6.38078455320 0.353316895420 0 0 2 0 1.0 2.22117377000 0.599267000000 1.07760434000 0.231420000000 0 0 1 0 1.0 0.18518007000 1.000000000000 0 2 3 6 1.0 204.294008520 0.000406054068 18.2087593580 0.060255451613 9.92110243020 -0.274916712770 0 2 3 4 1.0 3.14415286850 0.431548499740 1.72208840310 0.554030791100 0.89098945714 0.240873112270 0 2 1 0 1.0 0.50599144000 1.000000000000 0 2 1 0 1.0 0.15135485000 1.000000000000 0 3 6 10 1.0 121.510552490 0.000634906290 32.9687943960 0.006181193632 19.2498624510 -0.008892982522 4.71984072540 0.201598847640 2.34280614160 0.429760490130 1.11353794120 0.382471267510 0 3 1 0 1.0 0.91220583000 1.000000000000 0 3 1 0 1.0 0.44722408000 1.000000000000 0 3 1 0 1.0 0.18628260000 1.000000000000 J. Laun, T. Bredow J. Comput. Chem. (2022), 43:839-846 "BSSE-corrected consistent Gaussian basis sets of triple-zeta valence with polarization quality of the fifth period for solid-state calculation", DOI: 10.1002/jcc.26839
252 12 STUTSC 0 0 5 2 1.0 6213.20016500 0.000173920733 920.896400170 0.001193358984 199.280427080 0.003625655678 24.7742330980 -0.059791033012 14.8381991690 0.959432032630 0 0 2 2 1.0 12.2787619540 0.759424299360 6.38078455320 0.353316895420 0 0 2 0 1.0 2.22117377000 0.599267000000 1.07760434000 0.231420000000 0 0 1 0 1.0 0.18518007000 1.000000000000 0 2 3 6 1.0 204.294008520 0.000406054068 18.2087593580 0.060255451613 9.92110243020 -0.274916712770 0 2 3 4 1.0 3.14415286850 0.431548499740 1.72208840310 0.554030791100 0.89098945714 0.240873112270 0 2 1 0 1.0 0.50599144000 1.000000000000 0 2 1 0 1.0 0.15135485000 1.000000000000 0 3 6 10 1.0 121.510552490 0.000634906290 32.9687943960 0.006181193632 19.2498624510 -0.008892982522 4.71984072540 0.201598847640 2.34280614160 0.429760490130 1.11353794120 0.382471267510 0 3 1 0 1.0 0.91220583000 1.000000000000 0 3 1 0 1.0 0.44722408000 1.000000000000 0 3 1 0 1.0 0.18628260000 1.000000000000 J. Laun, T. Bredow J. Comput. Chem. (2022), 43:839-846 "BSSE-corrected consistent Gaussian basis sets of triple-zeta valence with polarization quality of the fifth period for solid-state calculation", DOI: 10.1002/jcc.26839 Desmarais, J. K., Flament, J. P., Erba, A. (2020). Spin-orbit coupling in periodic systems with broken time-reversal symmetry: Formal and computational aspects. Physical Review B, 101(23), 235142. Note: To be used with CRYSTAL23
252 8 STUTLC 0 0 3 2. 1 4.620870 -0.076259 3.407086 0.222163 1.353795 -0.541514 0 0 1 0. 1 0.278218 1.0 0 0 1 0. 1 0.128403 1.0 0 2 3 4. 1 4.772823 -0.038412 3.508559 0.112992 1.653984 -0.229605 0 2 1 0. 1 0.326880 1.0 0 2 1 0. 1 0.139746 1.0 0 3 1 0. 1. 0.9 1.0 0 3 1 0. 1. 0.3 1. cite Desmarais, J. K., Boccuni, A., Flament, J. P., Kirtman, B., & Erba, A. (2023). Perturbation Theory Treatment of Spin–Orbit Coupling. III: Coupled Perturbed Method for Solids. Journal of Chemical Theory and Computation, 19(6), 1853-1863 Desmarais, J. K., Flament, J. P., Erba, A. (2020). Spin-orbit coupling in periodic systems with broken time-reversal symmetry: Formal and computational aspects. Physical Review B, 101(23), 235142. Note: To be used with CRYSTAL23
252 11 STUTSC 0 0 6 2. 1. 2111.19000 0.612000000E-03 311.691000 0.320700000E-02 13.8226000 0.405512000 8.71748000 -0.932588000 1.98303000 0.919657000 0.970377000 0.404671000 0 0 6 2. 1. 2111.19000 0.251000000E-03 311.691000 0.145700000E-02 13.8226000 0.163702000 8.71748000 -0.398455000 1.98303000 0.578074000 0.970377000 0.327124000 0 0 1 0. 1. 0.279765000 1.00000000 0 0 1 0. 1. 0.106776000 1.00000000 0 2 5 6. 1. 17.0629000 0.893400000E-01 10.8306000 -0.271168000 2.59380000 0.662023000 1.12676000 0.460744000 0.300176000 0.288090000E-01 0 2 5 4. 1. 17.0629000 -0.268610000E-01 10.8306000 0.863040000E-01 2.59380000 -0.273502000 1.12676000 -0.151390000 0.300176000 0.583976000 0 2 1 0. 1. 0.975510000E-01 1.00000000 0 3 5 10. 1. 50.9106000 0.335400000E-02 18.4647000 -0.364200000E-02 4.27617000 0.278080000 1.89770000 0.516348000 0.786480000 0.326571000 0 3 1 0 1 0.600000 1. 0 3 1 0 1 0.200000 1. 0 4 1 0 1 0.200000 1 unpublished (MoTe) Desmarais, J. K., Flament, J. P., Erba, A. (2020). Spin-orbit coupling in periodic systems with broken time-reversal symmetry: Formal and computational aspects. Physical Review B, 101(23), 235142. Note: To be used with CRYSTAL23