Iron Basis-Sets:


Fe_86-411d41G_towler_1992a

26 7
0 0 8 2.0 1.0
 315379.0 0.000227
 45690.0 0.0019
 9677.3 0.0111
 2520.88 0.0501
 759.746 0.1705
 262.964 0.36924
 102.801 0.4033
 42.9733 0.1434
0 1 6 8.0 1.0
 798.262 -0.0052 0.00850
 191.162 -0.068 0.0608
 63.6885 -0.1314 0.2114
 25.3625 0.2517 0.3944
 10.7338 0.6433 0.398
 3.764 0.2825 0.2251
0 1 4 8.0 1.0
 48.1434 0.0122 -0.0215
 17.4579 -0.2278 -0.085
 6.9972 -0.8801 0.201
 3.0791 0.9755 1.3024
0 1 1 2.0 1.0
 1.3137 1.0 1.0
0 1 1 0.0 1.0
 0.5625 1.0 1.0
0 3 4 6.0 1.0
 30.4821 0.0583
 8.692 0.2591
 3.1008 0.5162
 1.1709 0.5656
0 3 1 0.0 1.0
 0.4345 1.0 

M. Catti, G. Valerio and R. Dovesi, 
``Theoretical study of electronic, magnetic, and structural properties of alpha-Fe2O3 (hematite)'',
Phys. Rev. B 51, 7441-7450 (1995).


Fe_86-411d41G_towler_1992b
26 7
0 0 8 2.0 1.0
 316081.0 0.000227
 45202.0 0.001929
 9627.9 0.0111
 2521.82 0.05
 760.208 0.1705
 262.994 0.3691
 102.856 0.4034
 42.9433 0.1434
0 1 6 8.0 1.0
 797.99 -0.0052 0.00850
 190.956 -0.0681 0.0609
 63.6118 -0.1313 0.2116
 25.3393 0.2522 0.3942
 10.7282 0.642 0.3975
 3.7566 0.2833 0.223
0 1 4 8.0 1.0
 47.5075 0.012 -0.0217
 17.3532 -0.2339 -0.083
 6.9807 -0.8877 0.1988
 3.0729 0.9954 1.2847
0 1 1 2.0 1.0
 1.2936 1.0 1.0
0 1 1 0.0 1.0
 0.5306 1.0 1.0
0 3 4 6.0 1.0
 29.0112 0.0574
 8.0431 0.2635
 2.7087 0.5236
 0.9412 0.5491
0 3 1 0.0 1.0
 0.321 1.0

G. Valerio, M. Catti, R. Dovesi and R. Orlando, 
``Ab initio study of antiferromagnetic rutile-type FeF2'',
Phys. Rev. B 52, 2422-2427 (1995).

I. de P.R. Moreira, R. Dovesi, C. Roetti, V.R. Saunders, R. Orlando, 
``Ab initio study of MF2 (M=Mn, Fe, Co, Ni) rutile-type compounds using the periodic UHF approach'',
Phys. Rev. B 62, 7816-7823 (2000).

Fe_pob_TZVP_2012

26 14
0 0 8 2.0 1.0
 300784.84637 0.00022806273096
 45088.970557 0.00176817887610
 10262.516317 0.00919270834900
 2905.2897293 0.03735549580700
 946.11487137 0.12151108426000
 339.87832894 0.28818881468000
 131.94425588 0.41126612677000
 52.111494077 0.21518583573000
0 0 4 2.0 1.0
 329.48839267 -0.02474521647700
 101.92332739 -0.11683089050000
 16.240462745 0.55293621136000
 6.8840675801 0.53601640182000
0 0 2 2.0 1.0
 10.470693782 -0.22912708577000
 1.7360039648 0.71159319984000
0 0 1 2.0 1.0
 1.7565166800 1.00000000000000
0 0 1 0.0 1.0
 0.77548354 1.00000000000000
0 0 1 0.0 1.0
 0.1058918100 1.00000000000000
0 2 6 6.0 1.0
 1585.3959970 0.00237939601790
 375.38006499 0.01925315475500
 120.31816501 0.09002183653600
 44.788749031 0.25798172356000
 17.829278584 0.41492649744000
 7.2247153786 0.24207474784000
0 2 3 6.0 1.0
 28.143219756 -0.02904175515200
 3.8743241412 0.55312260343000
 1.5410752281 0.96771136842000
0 2 1 0.0 1.0
 0.9336590800 1.00000000000000
0 2 1 0.0 1.0
 0.1999999900 1.00000000000000
0 3 4 6.0 1.0
 61.996675034 0.01197197225500
 17.873732552 0.07321013541000
 6.2744782934 0.23103094314000
 2.3552337175 0.39910706494000
0 3 1 0.0 1.0
 0.8417158200 1.00000000000000
0 3 1 0.0 1.0
 0.2611100300 1.00000000000000
0 4 1 0.0 1.0
 1.5980000000 1.00000000000000

M. F. Peintinger, D. Vilela Oliveira, and T. Bredow
"Consistent Gaussian Basis Sets of Triple-Zeta Valence with 
Polarization Quality for Solid-State Calculations",
Journal of Computational Chemistry 2012, DOI: 10.1002/jcc.23153

Fe_s86411p6411d411_Heifets_2013

26 12
0 0 8 2.0 1.0
247426.107576325   0.000223462
37388.805659747   0.001707313
8612.279724774   0.008675841
2490.787800844   0.033758713
834.282419309   0.102983778
307.956720142   0.232897148
120.882417227   0.308832364
48.774255639    0.1434
0 0 6 2.0 1.0
661.082392369   -0.007059230
207.109457972   -0.051348171
82.815105774   -0.116463540
19.494100213   0.367940255
10.020117796   0.567346987
5.141981075  0.2833
0 0 4   2.0  1.0
18.692807889   -0.042890358
9.991179787   -0.240201963
5.279361597   -0.118434645
2.189743020     0.749492
0 0 1   2.0  1.0
0.967950917     1.0
0 0 1   0.0  1.0
0.375028732     1.0
0 2 6 6.0 1.0
2098.775839870   0.000982813
497.131032535   0.008142913
160.762011138   0.039648290
60.148834634   0.126840243
24.412184500   0.246176245
10.294498117   0.223
0 2 4   6.0  1.0
30.508018434   -0.047286445
16.314519941   -0.006806632
4.300890220   0.244202790
4.105736201    0.620533
0 2 1   0.0  1.0
1.710097327     1.0
0 2 1   0.0  1.0
0.654329277     1.0
0 3 4   6.0  1.0
65.381348225   0.014174026
18.805996311   0.090953133
6.574799404   0.288138317
2.484330725    0.496742
0 3 1   0.0  1.0
0.902706516     1.0
0 3 1   0.0  1.0
0.272140153     1.0

E. Heifets, E. A. Kotomin, A. A. Bagaturyants, J. Maier
Ab Initio Study of BiFeO3: Thermodynamic Stability Conditions
J. Phys. Chem. Lett. 6 (2015) 2847-2851

E. Heifets, E. A. Kotomin, A. A. Bagaturyants, J. Maier,
Thermodynamic stability of stoichiometric LaFeO3 and BiFeO3: a hybrid DFT study 
Phys.Chem.Chem.Phys., 2017, 19, 3738-3755
 
E. Heifets, E. A. Kotomin, A. A. Bagaturyants, J. Maier,
Thermodynamic stability of non-stoichiometric SrFeO3-delta : a hybrid DFT study 
Phys.Chem.Chem.Phys., 2019, 21, 3918-3931,  DOI: 10.1039/C8CP07117A


Fe_ECP10MFD_s411p411d411_Heifets_2013

226 9
INPUT
16. 0 2 2 2 0 0
20.930000  253.749588 0
 9.445000   37.922845 0
21.760000  161.036812 0
 9.178000   27.651298 0
25.900000  -24.431276 0
 8.835000   -1.434251 0
0 0 4   2.0  1.0
21.260689507    0.120957261
9.627214270    -0.494094979
4.879968886    -0.194538952
2.217082868    0.749492
0 0 1   2.0  1.0
1.007113554     1.0
0 0 1   0.0  1.0
0.404290735     1.0
0 2 4   6.0  1.0
52.094514549    0.005400563
12.935765586    -0.110322212
3.463906999    0.393569421
1.659594423    0.620533
0 2 1   0.0  1.0
0.780389923     1.0
0 2 1   0.0  1.0
0.344346105     1.0
0 3 4   6.0  1.0
50.875896367   0.017197143
16.437462399   0.107748857
6.062923129   0.309828055
2.349843474   0.496742
0 3 1   0.0  1.0
0.875470971     1.0
0 3 1   0.0  1.0
0.270016404      1.0

E. Heifets, E. A. Kotomin, A. A. Bagaturyants, J. Maier
Ab Initio Study of BiFeO3: Thermodynamic Stability Conditions
J. Phys. Chem. Lett. 6 (2015) 2847-2851

E. Heifets, E. A. Kotomin, A. A. Bagaturyants, J. Maier,
Thermodynamic stability of stoichiometric LaFeO3 and BiFeO3: a hybrid DFT study 
Phys.Chem.Chem.Phys., 2017, 19, 3738-3755
 
E. Heifets, E. A. Kotomin, A. A. Bagaturyants, J. Maier,
Thermodynamic stability of non-stoichiometric SrFeO3-delta : a hybrid DFT study 
Phys.Chem.Chem.Phys., 2019, 21, 3918-3931,  DOI: 10.1039/C8CP07117A


Fe_pob_DZVP_rev2

26 11
0 0 6 2 1
  60923.640643       0.0014302254466
  9147.8893982       0.0109587900380
  2081.3505927       0.0543325542480
  587.55977067       0.1888499500900
  191.09043990       0.3825306994600
  65.732730112       0.2930833598400
0 0 3 2 1
  127.25891928      -0.1096456492500
  14.830913010       0.6438763133200
  6.0653307408       0.4547234732300
0 0 3 2 1
  10.449943710      -0.2253963995200
  1.7245228003       0.7216439815600
  0.7177217733       0.4498549292200
0 0 1 2 1
  0.5185142600       1.0000000000000
0 0 1 0 1
  0.1411818500       1.0000000000000
0 2 5 6 1
  773.43750995       0.0094325735144
  182.15149714       0.0700296205750
  57.547272758       0.2699365199600
  20.614988935       0.5270001104700
  7.6348557890       0.3428414802800
0 2 3 6 1
  3.8719327990       0.3397440298800
  1.4924724132       0.5684259400500
  0.5606128496       0.2364936583900
0 2 1 0 1
  0.4057599100       1.0000000000000
0 3 4 6 1
  38.968133419       0.0278796643820
  10.800067078       0.1485831998200
  3.6136457999       0.3690547949600
  1.2129967888       0.4774510088300
0 3 1 0 1
  0.3292804600       1.0000000000000
0 4 1 0 1
  1.5980000000       1.0000000000000

D. Vilela Oliveira, M. F. Peintinger, J. Laun, and T. Bredow
"BSSE-correction scheme for consistent gaussian basis sets of double- and triple-zeta valence with polarization quality for solid-state calculations",
Journal of Computational Chemistry 2019, 40, 2364–2376 DOI: 10.1002/jcc.26013

Fe_pob_TZVP_rev2

26 14
0 0 8 2.0 1.0
  300784.84637      0.00022806273096
  45088.970557      0.00176817887610
  10262.516317      0.00919270834900
  2905.2897293      0.03735549580700
  946.11487137      0.12151108426000
  339.87832894      0.28818881468000
  131.94425588      0.41126612677000
  52.111494077      0.21518583573000
0 0 4 2.0 1.0
  329.48839267     -0.02474521647700
  101.92332739     -0.11683089050000
  16.240462745      0.55293621136000
  6.8840675801      0.53601640182000
0 0 2 2.0 1.0
  10.470693782     -0.22912708577000
  1.7360039648      0.71159319984000
0 0 1 2.0 1.0
  1.2565166800      1.00000000000000
0 0 1 0.0 1.0
  0.57548354        1.00000000000000
0 0 1 0.0 1.0
  0.1558918100      1.00000000000000
0 2 6 6.0 1.0
  1585.3959970      0.00237939601790
  375.38006499      0.01925315475500
  120.31816501      0.09002183653600
  44.788749031      0.25798172356000
  17.829278584      0.41492649744000
  7.2247153786      0.24207474784000
0 2 3 6.0 1.0
  28.143219756     -0.02904175515200
  3.8743241412      0.55312260343000
  1.5410752281      0.96771136842000
0 2 1 0.0 1.0
  0.6336590800      1.00000000000000
0 2 1 0.0 1.0
  0.1999999900      1.00000000000000
0 3 4 6.0 1.0
  61.996675034      0.01197197225500
  17.873732552      0.07321013541000
  6.2744782934      0.23103094314000
  2.3552337175      0.39910706494000
0 3 1 0.0 1.0
  0.8417158200      1.00000000000000
0 3 1 0.0 1.0
  0.2611100300      1.00000000000000
0 4 1 0.0 1.0
  1.1980000000      1.00000000000000


D. Vilela Oliveira, M. F. Peintinger, J. Laun, and T. Bredow
"BSSE-correction scheme for consistent gaussian basis sets of double- and triple-zeta valence with polarization quality for solid-state calculations",
Journal of Computational Chemistry 2019, 40, 2364–2376 DOI: 10.1002/jcc.26013

Fe_Mossbauer_small-BS_Desmarais_2021

26 16
0 0 8 2.0 1.0
 247426.107576325 0.000223462
 37388.805659747   0.001707313
 8612.279724774.    0.008675841
 2490.787800844     0.033758713
 834.282419309       0.102983778
 307.956720142       0.232897148
 120.882417227       0.308832364
 48.774255639         0.1434
0 0 6 2.0 1.0
 661.082392369  -0.007059230
 207.109457972  -0.051348171
 82.815105774    -0.116463540
 19.494100213     0.367940255
 10.020117796     0.567346987
 5.141981075       0.2833
0 0 4 2.0 1.0
 18.692807889 -0.042890358
 9.991179787   -0.240201963
 5.279361597   -0.118434645
 2.189743020    0.749492
0 1 1 2.0 1.0
 4.4210000000 1.0 1.0
0 1 1 0.0 1.0
1.8170000000 1.0 1.0
0 1 1 0.0 1.0
 0.7484000000 1.0 1.0
0 1 1 0.0 1.0
 0.1500000000 1.0 1.0
0 2 6 6.0 1.0
 2098.775839870 0.000982813
 497.131032535   0.008142913
 160.762011138   0.039648290
 60.148834634    0.126840243
 24.412184500    0.246176245
 10.294498117    0.223
0 2 4 6.0 1.0
 30.508018434   -0.047286445
 16.314519941   -0.006806632
 4.300890220      0.244202790
 4.105736201      0.620533
0 3 4 6.0 1.0
 65.381348225 0.014174026
 18.805996311 0.090953133
 6.574799404  0.288138317
 2.484330725  0.496742
0 3 1 0.0 1.0
 0.922300000 1.0
0 3 1 0.0 1.0
 0.294000000 1.0
0 4 1 0.0 1.0
7.505595746 1.0
0 4 1 0.0 1.0
2.388061019 1.0
0 4 1 0.0 1.0
0.774272473 1.0
0 5 1 0. 1.
1.00 1.0


The basis set above has been specifically designed for computing the Mössbauer isomer shift of iron 
(calculated from a difference of electron densities at the position of nuclei) as described in:

Jacques Desmarais, Wenli Bi, Jiyong Zhao, Michael Yu, Esen Alp, and John Tse. 
57^Fe Mössbauer Isomer Shift of Pure Iron and Iron Oxides at High Pressure - an Experimental and Theoretical Study. 
J. Chem. Phys. 154, 214104, 2021.

Note that the Mössbauer isomer shift can be very sensitive to the numerical tolerances of the calculation. 
Accurate results may only be obtained by studying its convergence w.r.t. the numerical tolerances. 
In previous calculations, the following parameters were used:

TOLINTEG
12 12 12 20 50
NOBIPOLA
TOLDEE
10


Fe_Mossbauer_large-BS_Desmarais_2021

26 29
0 0 1 0.0 1.0
 3642122500.00000 1.0
0 0 1 0.0 1.0
 375074535.917434 1.0
0 0 1 0.0 1.0
 66616242.0788393 1.0
0 0 1 0.0 1.0
 8952029.04676606 1.0
0 0 1 0.0 1.0
 1524140.99437303 1.0
0 0 1 0.0 1.0
 331678.868874916 1.0
0 0 1 2.0 1.0
 85237.6514764104 1.0
0 0 1 2.0 1.0
 24266.5000000000 1.0
0 0 1 2.0 1.0
 7536.44000000000 1.0
0 0 1 2.0 1.0
 2528.29000000000 1.0
0 0 1 0.0 1.0
 910.117000000000 1.0
0 0 1 0.0 1.
 350.928000000000 1.0
0 0 1 0.0 1.0
 144.225000000000 1.0
0 0 1 0.0 1.0
 61.7423000000000 1.0
0 0 1 0.0 1.0
 22.0011000000000 1.0
0 0 1 0.0 1.0
 10.1044000000000 1.0
0 1 1 0.0 1.0
 4.56760000000000 1.0 1.0
0 1 1 0.0 1.0
 1.73970000000000 1.0 1.0
0 1 1 0.0 1.0
 0.68920000000000 1.0 1.0
0 1 1 0.0 1.0
 0.15000000000000 1.0 1.0
0 2 6 6.0 1.0
 2098.77583987 0.000982813
 497.131032535 0.008142913
 160.762011138 0.039648290
 60.148834634 0.126840243
 24.412184500 0.246176245
 10.294498117 0.223
0 2 4 6.0 1.0
 30.508018434 -0.047286445
 16.314519941 -0.006806632
 4.300890220    0.244202790
 4.105736201    0.620533
0 3 4 6.0 1.0
 65.381348225 0.014174026
 18.805996311 0.090953133
 6.574799404  0.288138317
 2.484330725  0.496742
0 3 1 0.0 1.0
 0.922300000 1.0
0 3 1 0.0 1.0
 0.294000000 1.0
0 4 1 0.0 1.0
7.505595746 1.0
0 4 1 0.0 1.0
2.388061019 1.0
0 4 1 0.0 1.0
0.774272473 1.0
0 5 1 0. 1.
1.00 1.


The basis set above has been specifically designed for computing the Mössbauer isomer shift of iron 
(calculated from a difference of electron densities at the position of nuclei) as described in:

Jacques Desmarais, Wenli Bi, Jiyong Zhao, Michael Yu, Esen Alp, and John Tse.
57^Fe Mössbauer Isomer Shift of Pure Iron and Iron Oxides at High Pressure - an Experimental and Theoretical Study.
J. Chem. Phys. 154, 214104, 2021.

Note that the Mössbauer isomer shift can be very sensitive to the numerical tolerances of the calculation.
Accurate results may only be obtained by studying its convergence w.r.t. the numerical tolerances.
In previous calculations, the following parameters were used:

TOLINTEG
12 12 12 20 50
NOBIPOLA
TOLDEE
10